■ある恒等式

1/pq=1/(p+q)・(1/p+1/q)

1/p^2q^2=1/(p+q)^2・(1/p^2+1/q^2)+2/(p+q)^3・(1/p+1/q)

===================================

直接確かめることができる

1/(p+q)・(1/p+1/q)=1/(p+q)・(p+q)/pq=1/pq

1/(p+q)^2・(1/p^2+1/q^2)+1/(p+q)^3・(1/p+1/q)=1/(p+q)^2・(p^2+q^2)/p^2q^2+2/(p+q)^3・(p+q)/pq

=1/(p+q)^2・(p^2+q^2)/p^2q^2+2/(p+q)^2・pq/p^2q^2

=1/(p+q)^2・(p^2+2pq+q^2)/p^2q^2

=1/p^2q^2

===================================

微分して確かめてみよう

1/pq=1/(p+q)・(1/p+1/q)をpで微分

-1/p^2q=-1/(p+q)^2・(1/p+1/q)-1/(p+q)・1/p^2

qで微分すると

1/p^2q^2=2(p+q)/(p+q)^4・(1/p+1/q)+1/(p+q)^2・1/q^2+1/(p+q)^2・1/p^2             +

=1/(p+q)^2・(1/p^2+1/q^2)+2/(p+q)^3・(1/p+1/q)

===================================