■ある恒等式
1/pq=1/(p+q)・(1/p+1/q)
1/p^2q^2=1/(p+q)^2・(1/p^2+1/q^2)+2/(p+q)^3・(1/p+1/q)
===================================
直接確かめることができる
1/(p+q)・(1/p+1/q)=1/(p+q)・(p+q)/pq=1/pq
1/(p+q)^2・(1/p^2+1/q^2)+1/(p+q)^3・(1/p+1/q)=1/(p+q)^2・(p^2+q^2)/p^2q^2+2/(p+q)^3・(p+q)/pq
=1/(p+q)^2・(p^2+q^2)/p^2q^2+2/(p+q)^2・pq/p^2q^2
=1/(p+q)^2・(p^2+2pq+q^2)/p^2q^2
=1/p^2q^2
===================================
微分して確かめてみよう
1/pq=1/(p+q)・(1/p+1/q)をpで微分
-1/p^2q=-1/(p+q)^2・(1/p+1/q)-1/(p+q)・1/p^2
qで微分すると
1/p^2q^2=2(p+q)/(p+q)^4・(1/p+1/q)+1/(p+q)^2・1/q^2+1/(p+q)^2・1/p^2 +
=1/(p+q)^2・(1/p^2+1/q^2)+2/(p+q)^3・(1/p+1/q)
===================================