■ガウスと算術幾何平均(その26)

 (その23)において

L(a,1)=L(cosθ,1)=sinθ/θ=

=(a^2−1)^1/2/log(a+(a^2−1)^1/2)

∫dx/(x^2−1)^1/2=log(x+(x^2−1)^1/2)

(log(x+(x^2−1)^1/2)’=1/(x^2−1)^1/2

===================================

 t=x+(x^2−1)^1/2とおく.

 x=(t^2+1)/2t,dx=(t^2−1)/2t^2dt 

 (x^2−1)^1/2=t−x=(t^2−1)/2t

 したがって,

∫dx/(x^2−1)^1/2=∫2t/(t^2−1)・(t^2−1)/2t^2dt

=∫dt/t=logt=log(x+(x^2−1)^1/2)

===================================

 したがって,

L(a,1)=L(cosθ,1)=sinθ/θ=

=(a^2−1)^1/2/log(a+(a^2−1)^1/2)

=(a^2−1)^1/2/∫(1,a)dx/(x^2−1)^1/2

===================================