■ガウスと算術幾何平均(その25)

  M(a,b)=1/(2/π∫(0,1)dx/√(1−x^2)(1−k^2x^2))

 算術幾何平均とテータ関数の関係を調べてれみたい.

====================================

【1】公式集

θ00(2τ,2z)={θ00(τ,z)^2+θ01(τ,z)^2}/2θ00(τ,0)

θ00(2τ,0)^2=1/2{θ00(τ,0)^2+θ01(τ,0)^2}

θ01(2τ,0)^2=θ00(τ,0)θ01(τ,0)

k’(τ)=θ01(τ,0)^2/θ00(τ,0)^2,k(τ)^2=1−k’(τ)^2

K(τ)=π/2・θ00(τ,0)^2=∫(0,1)dx/√(1−x^2)(1−k(τ)^2x^2)

とおくと

  M(1,k’(τ))=π/2K(τ)=1/θ00(τ,0)^2

====================================