■フレネル積分とリンゴの皮むき曲線(その21)

 半径rの球の(z軸ではなく)経線(大円)を4N等分すると,皮幅dはd=πr/(2N)・・・としたが,実際の皮むき曲線の近似では,z軸を2N等分する方が良いのではないかと思う.皮幅は一定ではないので赤道付近で測るものとする.

===================================

[1]半径rの球のz軸を2N等分すると,皮幅dはd=r/N

[2]各等分点における円周は

  2π{r^2−(kr/N)^2}^1/2,k=0〜N

  2πr{1−(k/N)^2}^1/2,k=0〜N

であるから,北半球におけるその総和は

  L=2πrΣ{1−(k/N)^2}^1/2,k=0〜N

 ^1/2がなければ簡単な計算であるが,仕方がないので積分で近似すると

Σ{1−(k/N)^2}^1/2・1/N〜∫(0,1){1−x^2}^1/2dx=π/4

Σ{1−(k/N)^2}^1/2〜πN/4

  L=π^2rN/2

 d=r/Nを代入すると,L=π^2r^2/2d

  L=150,r=5

  d=π^2r^2/2L=250/300=5/6センチ

===================================

[雑]結果は1センチとほとんど変わらない.

===================================