■超幾何関数とある代数方程式(その4)
【5】ヴォルファルトの発見
ω1,ω2を1次独立な基底とする格子を考えます.その商τ=ω1/ω2を基本領域Γに属するようにとると,ある楕円曲線が構成され,判別式Δは重さ12のモジュラー形式となります.また,j(τ)は上半平面におけるΓ不変な重さ0のモジュラー関数となります.
虚2次体の虚数乗法の理論から,あるτに対する楕円モジュラー関数の値j(z)は代数的であることが知られています.逆にいうと,虚2次でない任意の代数的数に対しj(z)は超越数になるというのです.
そして,ヴォルファルトは
(1)Q(i)に属するあるτに対して,z=1−1/j(τ),2F1(1/12,5/12;1/2;z)が代数的点となるτが存在する
(2)Q(√−3)に属するあるτに対して,z=j(τ)/(j(τ)−1),2F1(1/12,5/12;1/2;z)が代数的点となるτが存在する
ことを示し,実際の代数的点
2F1(1/12,5/12;1/2;1323/1331)=3/4・4√11
2F1(1/12,7/12;2/3;64000/64009)=2/3・6√253
を求めています(1985年).
===================================