■(2^n+1)/m型の数(その13)
2^nは3では割り切れないが,
2^n=1 (mod3)
2^n=2 (mod3)
2^n+1=(2+1)(2^n-1−2^n-2−・・・−1)
2^n+1=0 (mod3)
U1=(1,0)=1 (1 (mod3))
U2=(2,0)=1 (1 (mod3))
U3=(3,0)+(3,3)=2 (2 (mod3))
U4=(4,0)+(4,3)=5 (2 (mod3))
U5=(5,0)+(5,3)=11 (2 (mod3))
U6=(6,0)+(6,3)+(6,6)=22 (1 (mod3))
U7=(7,0)+(7,3)+(7,6)=43 (1 (mod3))
U8=(8,0)+(8,3)+(8,6)=85 (1 (mod3))
U9=(9,0)+(9,3)+(9,6)+(9,9)=170 (2 (mod3))
U10=(10,0)+(10,3)+(10,6)+(10,9)=341 (2 (mod3))
Un=(2^n+2cos(nπ/3))/3
V3=4+2=6 (0 (mod3))
V4=6+5=11 (2 (mod3))
V5=12+10=22 (1 (mod3))
V6=22+21=43 (1 (mod3))
V7=44+42=86 (2 (mod3))
V8=86+85=171 (0 (mod3))
V9=172+170=342 (0 (mod3))
V10=342+341=683 (2 (mod3))
Vn-1≒2(2^n+2cos(nπ/3))/3
となって,整除性に周期3は成り立たない.
Vn-1≒2^n+1/3
2^n+1=2 (mod3)
2^n+1=1 (mod3)
===================================