■(2^n+1)/m型の数(その13)

 2^nは3では割り切れないが,

  2^n=1  (mod3)

  2^n=2  (mod3)

  2^n+1=(2+1)(2^n-1−2^n-2−・・・−1)

  2^n+1=0  (mod3)

  U1=(1,0)=1   (1 (mod3))

  U2=(2,0)=1   (1 (mod3))

  U3=(3,0)+(3,3)=2   (2 (mod3))

  U4=(4,0)+(4,3)=5   (2 (mod3))

  U5=(5,0)+(5,3)=11   (2 (mod3))

  U6=(6,0)+(6,3)+(6,6)=22   (1 (mod3))

  U7=(7,0)+(7,3)+(7,6)=43   (1 (mod3))

  U8=(8,0)+(8,3)+(8,6)=85   (1 (mod3))

  U9=(9,0)+(9,3)+(9,6)+(9,9)=170   (2 (mod3))

  U10=(10,0)+(10,3)+(10,6)+(10,9)=341   (2 (mod3))

  Un=(2^n+2cos(nπ/3))/3

  V3=4+2=6   (0 (mod3))

  V4=6+5=11   (2 (mod3))

  V5=12+10=22   (1 (mod3))

  V6=22+21=43   (1 (mod3))

  V7=44+42=86   (2 (mod3))

  V8=86+85=171   (0 (mod3))

  V9=172+170=342   (0 (mod3))

  V10=342+341=683   (2 (mod3))

  Vn-1≒2(2^n+2cos(nπ/3))/3

となって,整除性に周期3は成り立たない.

  Vn-1≒2^n+1/3

  2^n+1=2  (mod3)

  2^n+1=1  (mod3)

===================================