■空間充填等面単体の計量(その20)

5次元の場合

P0P1=P1P2=P2P3=P3P4=P4P5=a

P0P2=P1P3=P2P4=P3P5=b

P0P3=P1P4=P2P5=c

P0P4=P1P5=d

P0P5=e

P0P1P2P3P4P5のファセットは

P0P1P2P3P4・・・abcdabcaba

P0P1P2P3P5・・・abceabdacb

P0P1P2P4P5・・・abdeacdbca

P0P1P3P4P5・・・acdebcdaba

P0P2P3P4P5・・・bcdeabcaba

P1P2P3P4P5・・・abcdabcaba

a=e,b=dのとき

P0P1P2P3P4・・・abcbabcaba=a4b4c2

P0P1P2P3P5・・・abcaabbacb=a4b4c2

P0P1P2P4P5・・・abbaacbbca=a4b4c2

P0P1P3P4P5・・・acbabcbaba=a4b4c2

P0P2P3P4P5・・・bcbaabcaba=a4b4c2

P1P2P3P4P5・・・abcbabcaba=a4b4c2・・・等面となる.

===================================

[まとめ]a=e,b=dのとき,等面単体になることは確かめられたが,(a^2,b^2,c^2)=(5,8,9)でなくても

 6a^2−15b^2+10c^2=0

は成り立つ.5次元等面空間充填単体は一意に決まらないことになる.

 ゴールドバーグの一般化は十分条件ではあっても,必要条件とは限らないことになるが,おそらく必要十分条件なのであろうと思われる.

===================================