■(2^n+1)/m型の数(その4)

[Q](8!)^2=?  (mod17)

===================================

[A]17=4k+1型素数であるから,ウィルソンの定理より(p-1)!={((p-1)/2)!}^2=-1 (modp)

16!=-(8!)^2=-1 (mod17)

(8!)^2+1=0 (mod31)

{(8!)^2+1}/17は整数である

===================================

以前取り上げた「(2^148+1)/17は素数であるか?」という問題とは全く無関係である

===================================