■メルセンヌ擬素数(その83)

[Q]x0=m,mは2より大きい整数とする.このとき

   xn=(xn-1)^2−2,

の一般項を求めよ.

[A]α+1/α=m,α>1とすると,帰納法より

  xn=α^(2^n)+α^-(2^n)

 これはxn=[α^(2^n)]と等価である.

 たとえば,m=3のとき,

  α+1/α=3

  α^2−3α+1=0,α=(3+√5)/2=φ^2

  xn=[φ^(2^n+1)]

===================================

[Q]y0=m,mは正の整数とする.このとき

   yn=2(yn-1)^2−1

の一般項を求めよ.

[A]2yn=(2yn-1)^2−2,2y0=2m

  α+1/α=2m,α>1とすると,帰納法より

  2yn=α^(2^n)+α^-(2^n)

 これはyn=[α^(2^n)/2]と等価である.

===================================