■シュタイナー数(その20)

x^x^x^x^x^・・・=mのとき,

x^(x^x^x^x^x^・・・)=x^m=m

と書き変えることができて

  x=m^1/m 

===================================

[補題]関数y=x^1/xを微分せよ.

logy=logx^1/x=(logx)/x

  ((logx)/x)’=(1−logx)/x^2

  y’=y(1−logx)/x^2=(1−logx+1)x^1/x-2

したがって,x=eのとき,最大値1.4446647861・・・をとる.

===================================

実は、関数f(x)=x^(x^x^x^x^x^・・・)は区間[exp(−e),exp(1/e)]で定義されることをオイラーが示しています.

exp(−e)=0.06598803584・・・<1

exp(1/e)=1.44466786100>√2>1

===================================