■eは無理数・超越数(その15)

 (その9):y=(1+1/x)^(x+1/2)は単調減少で→e

 (その10):y=(1+1/x)^(x+1/3)は単調増加で→e

であった.

  y=(1+1/x)^(x+1/m)

は2<m<3の間で,単調減少でも単調増加でもない変動を示すはずである.

 予想される値は

  2^(1+1/m)=e

  (1+1/m)log2=1

  1+1/m=1/log2,m=log2/(1−log2)=2.25889

であるが,正しいだろうか?

===================================

[1]m=√5

1 2.72681

1.1 2.71956

1.2 2.71403

1.3 2.70977

1.4 2.70646

1.5 2.70388

1.6 2.70185

1.7 2.70027

1.8 2.69903

1.9 2.69807

2 2.69732

2.1 2.69676

2.2 2.69634

2.3 2.69603

2.4 2.69582

2.5 2.69569

2.6 2.69563

2.7 2.69562

2.8 2.69565

2.9 2.69572

3 2.69582

===================================

[2]m=√6

1 2.65415

1.1 2.65189

1.2 2.65068

1.3 2.65019

1.4 2.65021

1.5 2.65059

1.6 2.65122

1.7 2.65203

1.8 2.65296

1.9 2.65398

2 2.65504

2.1 2.65614

2.2 2.65725

2.3 2.65837

2.4 2.65948

2.5 2.66058

2.6 2.66166

2.7 2.66272

2.8 2.66376

2.9 2.66478

3 2.66577

===================================

[3]m=√7

1 2.59901

1.1 2.60047

1.2 2.60247

1.3 2.6048

1.4 2.6073

1.5 2.6099

1.6 2.61253

1.7 2.61513

1.8 2.6177

1.9 2.62021

2 2.62264

2.1 2.625

2.2 2.62727

2.3 2.62947

2.4 2.63158

2.5 2.63361

2.6 2.63556

2.7 2.63744

2.8 2.63924

2.9 2.64098

3 2.64264

===================================

[4]m=√8

1 2.55541

1.1 2.55974

1.2 2.56425

1.3 2.56877

1.4 2.57322

1.5 2.57756

1.6 2.58174

1.7 2.58577

1.8 2.58962

1.9 2.5933

2 2.59681

2.1 2.60016

2.2 2.60335

2.3 2.6064

2.4 2.6093

2.5 2.61207

2.6 2.61471

2.7 2.61723

2.8 2.61964

2.9 2.62195

3 2.62415

===================================