■nの分割と最大積(その5)

[Q]y=x^xの最小値を求めよ.

[A]logx^x=xlogx

  (xlogx)’=logx+1=log(xe)

  y’=ylog(xe)

 したがって,x^xは0<x<1/eでは単調減少,x>1/eでは単調増加.x=1/eのとき,最小値(1/e)^1/e=e^-1/e=0.9622・・・をとる.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[Q]∫(0,1)x^xdx=1−1/2^2+1/3^3−1/4^4+1/5^5−1/6^6+・・・を示せ.

[A]x^x=exp(xlogx)=Σ(xlogx)^n/n!

  ∫x^xdx=∫exp(xlogx)dx=Σ1/n!∫(xlogx)^ndx=・・・

=Σ(−1)^n-1/n^n=1−1/2^2+1/3^3−1/4^4+1/5^5−1/6^6+・・・

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 同様にして

  ∫(0,1)1/x^xdx=1+1/2^2+1/3^3+1/4^4+1/5^5+1/6^6+・・・

も成り立つ.

===================================