■正多胞体の中心断面(その6)
単位球の中心を通る断面は単位円(面積π)です。また、単位円の中心を通る断面は直径(長さ2)です。今回のコラムではn次元超球の中心断面を求めてみることにします。
===================================
球に相当するn次元の図形を超球と呼びます.n次元単位超球{x1^2+x2^2+・・・+xn^2≦1}の体積をVnとすると,V1=2(直径),V2=π(面積),V3=4π/3(体積)はご存知でしょう.n次元単位球はどんなに次元が高くても,長さが2より大きな線分を含むことはできません.単位球体の直径は次元によらず2なのです.
n次元単位超球の体積Vn,その表面積を表面積Sn-1とすると,単位超球の表面積Sn-1はnVn,半径rのn次元球の体積はVnr^n,表面積はnVnr^(n-1)となります.n次元単位超球の体積Vnを求めてみると,
Vn=π^(n/2)/Γ(n/2+1)
を得ることができます.また,Γ(m+1)=m!より,この結果は,形式的に
Vn=π^(n/2)/(n/2)!
と書くことができます.
一方,半径rのn次元超球の体積はVnr^nですから,体積を1とするrの値はVn^(-1/n)で与えられます.また,n次元超球の中心を通る超平面による切り口は(n−1)次元超球であり,その体積はVn-1r^(n-1)で表されますから,体積が1の超球の切り口の体積は
Vn-1・Vn^(1/n-1)
となります.
n Vn-1・Vn^(1/n-1)
2 1.128
3 1.209
4 1.265
5 1.307
6 1.339
7 1.365
8 1.387
9 1.405
10 1.420
11 1.434
12 1.445
13 1.456
14 1.465
Vn=π^(n/2)/(n/2)!より,
An={(n/2)!}^(1-1/n)/{(n-1)/2}!
これを有名なスターリングの近似公式
k!=√2π・k^(k+1/2)・exp(−k)
を使って書き直してみましょう.簡約化すると
An→(n/2)^(n/2)/{(n-1)/2}^(n/2)
={n/(n-1)}^(n/2)
={(1+1/(n-1))^(n-1)}^(1/2)*{n/(n-1)}^(1/2)
→e^(1/2)
したがって,極限値√e=1.6487・・・に収束することがわかります.
===================================
正多胞体の中心断面もこのように収束するのだろうか?
===================================