■折り紙による作図問題(その32)
【1】プラトーの問題
シャボン玉の丸い形や枠に張られた石けん膜の形の面白さは,表面積が最小になろうとする傾向のあらわれですが,石けん膜は「極小曲面(平均曲率が恒等的に0の曲面)」,シャボン玉は「平均曲率一定(≠0)曲面」と呼ばれる数学的曲面となっています.
ラグランジュは,与えられた境界をもつ極小曲面(表面積最小曲面)を決定せよという問題を提示しましたが,19世紀のベルギーの物理学者プラトーは,石けん膜に関する面白い実験結果を報告しました(1873年).
その実験によれば,針金で輪をつくれば,それがどんな形の囲いであっても,必ず石けん膜が張られるというもので,ラグランジュの提示した問題の部分的な解答を,実験的にではありますが得たことになります.プラトーが「閉曲線で囲まれた曲面のうち,面積最小のものを見出せ」を石けん膜を使って解いたことは有名で,そのため,この問題は今日ではプラトーの問題と呼ばれています.
物理的には,石けん膜では表面張力によって表面積最小の曲面が実現します.もし,輪をひねって立体的な形にしたものを石けん液に浸して引き上げると,そこの複雑な形の曲面ができることになりますが,その場合でも針金の枠のなかでは最小の表面積をもった膜が実現し,こうして一定の枠のなかにできる最小面積の曲面の形が決定できるわけです.
プラトーによって提起された問題は,いい換えれば,閉曲線を境界とする最小表面積の曲面を求める変分問題に他なりません.これに対する数学的な問題は「3次元ユークリッド空間の中に任意の閉曲線Cを与えたとき,Cを境界とする極小曲面は,どんな閉曲線に対しても存在するかどうか?」というものです.プラトー問題の解は物理的には石鹸膜として存在するものの,数学的にはどんな閉曲線に対しても存在するかどうかが問題となるのですが,極小曲面の存在証明が数学的になされたわけではないのです.
やがて,この問題は数学者の興味をひきつけ,極小曲面の存在と一意性を扱うこの問題は,プラトー問題として知られるようになりました.そして,1930〜1931年,アメリカの数学者ダグラスとハンガリーの数学者ラドーによって独立に解決されたのです.この業績により,ダグラスは1936年に数学界のノーベル賞にあたる第1回フィールズ賞を受賞しています.
===================================