■単体の体積(その4)

【4】オイラーの四面体公式(空間のヘロンの公式)

 この節で取り上げるのは,四面体についてのオイラーの問題「6辺の長さがa,b,c,d,e,fで,与えられた4面体の体積を求めよ」です.

 2つのベクトルa↑,b↑を基底とする平行体(平行四辺形)の面積は,外積は

  a↑×b↑

3つのベクトルa↑,b↑,c↑を基底とする平行体(平行六面体)の体積は,スカラー三重積

  (a↑×b↑)・c↑

すなわち,外積a↑×b↑とベクトルc↑の内積で与えられます.

 |a↑|=a,|b↑|=bとすれば,平行四辺形の面積は,

  S=absinθ

ですから,

  S^2=a^2b^2(1−cos^2θ)

    =|a↑|^2|b↑|^2−(a↑・b↑)^2

    =|a↑・a↑  a↑・b↑|

     |b↑・a↑  b↑・b↑|

 同様に,平行六面体の体積は

  V^2=|a↑・a↑  a↑・b↑  a↑・c↑|

     |b↑・a↑  b↑・b↑  b↑・c↑|

     |c↑・a↑  c↑・b↑  c↑・c↑|

で与えられます.

 これらのように,内積の行列式で定義される行列式をグラムの行列式(グラミアン)といいます.平行体の面積・体積はグラミアンの平方根に等しくなるというわけです.

 また,座標を使って表せば,n+1個の点の座標に(1,1,1,・・・,1)を加えて作られる(n+1)次の行列式の絶対値になります.

  |S|=|1 x1 y1|   |V|=|1 x1 y1 z1|

      |1 x2 y2|       |1 x2 y2 z2|

      |1 x3 y3|       |1 x3 y3 z3|

                     |1 x4 y4 z4|

 原点が含まれるときは,

  |S|=|x1 y1|   |V|=|x1 y1 z1|

      |x2 y2|       |x2 y2 z2|

                   |x3 y3 z3|

のように展開されます.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 これらはそれぞれn次元単体の体積のn!倍になりますから,三角形の面積,四面体の体積は,

  S’=S/2

  V’=V/6

 また,4辺の長さがa,b,cで与えられた三角形,6辺の長さがa,b,c,d,e,fで与えられた四面体の場合は,

  2^2(2!)^2S’^2=|0  a^2 b^2 1|

             |a^2 0  c^2 1|

             |b^2 c^2 0  1|

             |1  1  1  0|

  2^3(3!)^2V’^2=|0  a^2 b^2 c^2 1|

             |a^2 0  d^2 e^2 1|

             |b^2 d^2 0  f^2 1|

             |c^2 e^2 f^2 0  1|

             |1  1  1  1  0|

となります.

 前者はおなじみの平面三角形のヘロンの公式にほかなりませんが,面積をS’=Δとして,

(4Δ)^2=2a^2b^2+2b^2c^2+2c^2a^2−a^4−b^4−c^4

  =(a+b+c)(−a+b+c)(a−b+c)(a+b−c)

ここで,2s=a+b+cとおくと

  Δ^2=s(s−a)(s−b)(s−c)

となり,ヘロンの公式が得られます.

 後者が空間のヘロンの公式であり,V’=Δとして

  (12Δ)^2=a^2d^2(b^2+c^2+e^2+f^2−a^2−d^2)

         +b^2e^2(c^2+a^2+f^2+d^2−b^2−e^2)

         +c^2f^2(a^2+b^2+d^2+e^2−c^2−f^2)

       −a^2b^2c^2−a^2e^2f^2−d^2b^2f^2−d^2e^2c^2

 この空間のヘロンの公式は,オイラーの公式と呼ばれるものですが,

  (12×体積)^2=六斜術の両辺の差

に等しいということを主張しています.点Pが平面三角形ABCの平面上になく,4点が四面体の頂点をなすときの四面体の体積公式ですから,六斜術は四面体が平面上に退化して体積が0になった極限と解釈することができます.

 オイラーの公式は複雑であり,平面三角形のヘロンの公式のように因数分解できません.ただし,4面の面積が等しい等積四面体=4面が合同な鋭角三角形よりなる四面体(バンの定理)の場合,

  72Δ^2=(−a^2+b^2+c^2)(a^2−b^2+c^2)(a^2+b^2−c^2)

と因数分解した形で表されます.

===================================