■デーン・サマービル関係式(その39)
単純多面体に対して
fk=Σ(0,k)(−1)^j(n−j,n−k)fj
が成り立つ.0≦j≦k
k=nのときがオイラー関係式
fn=Σ(0,n)(−1)^jfj
である.
k=0のとき,f0=f0
k=1のとき,f1=nf0−f1
k=2のとき,f2=n(n−1)/2f0−(n−1)f1+f2
k=3のとき,f3=n(n−1)(n−2)/6f0−(n−1)(n−2)/2f1+(n−2)f2−f3
k=4のとき,f4=n(n−1)(n−2)(n−3)/24f0−(n−1)(n−2)(n−3)/6f1+(n−2)(n−3)/2f2−(n−3)f3+f4
k=5のとき,f5=n(n−1)(n−2)(n−3)(n−4)/120f0−(n−1)(n−2)(n−3)(n−4)/24f1+(n−2)(n−3)(n−4)/6f2−(n−3)(n−4)/2f3+(n−4)f4−f5
k=6のとき,f6=n(n−1)(n−2)(n−3)(n−4)(n−5)/720f0−(n−1)(n−2)(n−3)(n−4)(n−5)/120f1+(n−2)(n−3)(n−4)(n−5)/24f2−(n−3)(n−4)(n−5)/6f3+(n−4)(n−5)/2f4−(n−5)f5+f6
単純多面体に対して
f0=f0
2f1=nf0
2f3=n(n−1)(n−2)/6f0−(n−1)(n−2)/2f1+(n−2)f2
2f5=n(n−1)(n−2)(n−3)(n−4)/120f0−(n−1)(n−2)(n−3)(n−4)/24f1+(n−2)(n−3)(n−4)/6f2−(n−3)(n−4)/2f3+(n−4)f4
2f2k+1=Σ(0,2k)(−1)^j(n−j,2k+1−j)fj
であることが確認された.
===================================