等分可能性について調べておきたい.
P3(x)=3-6x-x^2
P4(x)=4(1+x)(1-6x+x^2)
P5(x)=(5-2x+x^2)(1-12x-26x^2+52x^3+x^4)
===================================
[1]P3(x)=3-6x-x^2=0
D>0で,0<x<1なる根あり
x=2√3-3
[2]P4(x)=4(1+x)(1-6x+x^2)=0
1-6x+x^2=0,D>0
x=3-2√2
[3]P5(x)=(5-2x+x^2)(1-12x-26x^2+52x^3+x^4)
5-2x+x^2=0,D<0
1-12x-26x^2+52x^3+x^4=0
x=-13+6√5-2(85-38√5)^1/2=0.073381
1-12s^4-26s^8+52s^12+s^16=0
の根として,
{-13+6√5-2(85-38√5)^1/2}^1/4=0.52047
となった.
===================================