■レムニスケートの幾何学(その8)
【3】オイラーの加法定理
1751年,オイラーは逆正弦関数の加法定理
G(x)+G(y)=G(x(1−y^2)^1/2+y(1−x^2)^1/2)
との類似に基づいて,レムニスケート積分に対する加法定理
G(x)+G(y)=G((x(1−y^4)^1/2+y(1−x^4)^1/2))/(1+x^2y^2))
を構成することに成功しています.
とくに,y=1の場合,反転公式
z→{(1−z^2)/(1+z^2)}^1/2
y=xの場合,倍角公式
z→2z(1−z^4)^1/2/(1+z^4)
を与えるというわけです.
===================================
【4】ファニャーノの変数変換=ランデン変換
f(t)=1/(1-t^2)^(1/2)
2u=2∫(0,x)f(t)dt
において,t=2v/(1+v^2)と置換すると
(1-t^2)^(1/2)=(1-v^2)/(1+v^2)
dt=2(1-v^2)dv/(1+v^2)^2
より
dt/(1-t^2)^(1/2)=2・dv/(1+v^2)
レムニスケート
f(t)=1/(1-t^4)^(1/2)
2u=2∫(0,x)f(t)dt
においても類似の置換に導かれて,t^2=2v^2/(1+v^4)と置換すると
(1-t^4)^(1/2)=(1-v^4)/(1+v^4)
2tdt=4v(1-v^4)dv/(1+v^4)^2
より
dt/(1-t^4)^(1/2)=√2・dv/(1+v^4)^(1/2)
さらに,v^2=2w^2/(1−w^4)と置換すると
(1+v^4)^(1/2)=(1+w^4)/(1-w^4)
2vdv=4w(1+w^4)dv/(1-w^4)^2
より
dv/(1+v^4)^(1/2)=√2・dw/(1-w^4)^(1/2)
これらの置換を行った結果,ファニャーノは
dt/(1-t^4)^(1/2)=2・dw/(1-w^4)^(1/2)
t^2=4w^2(1-w^4)/(1+w^4)^2
であることを見いだします.これに対応する積分間での関係がファニャーノの倍角公式
2∫(0,x)f(t)dt=∫(0,2x(1-x^4)^1/2/(1+x^4))f(t)dt
というわけです.これらの公式は2つの曲線:t^2=1−z^4,w^2=1+u^4の間の次数2のランデン変換です.
ファニャーノはレムニスケート弧長の2等分を与える
dt/(1-t^4)^(1/2)=2・dw/(1-w^4)^(1/2)
t^2=4w^2(1-w^4)/(1+w^4)^2
を見いだしましたが,同時に複素数による楕円積分の例
dt/(1-t^4)^(1/2)=(1+i)・dw/(1-w^4)^(1/2)
t^2=2iw^2/(1-w^4)
sl((1+i)u)=(1+i)sl(u)/(1-sl^4(u))^1/2
も得ています.ηを1の8乗根η=(1+i)/√2として,uをηuで置き換えると曲線t^2=1−z^4上の1±iの虚数乗法の公式が得られます.
===================================