■ディオファントス・モーデル・マチアセビッチ(その55)
[Q]所与の自然数nについて,
[1]1/(a−b)(a−c)+1/(b−a)(b−c)+1/(c−a)(c−b)=n
[2]a/(a−b)(a−c)+b/(b−a)(b−c)+c/(c−a)(c−b)=n
[3]a^2/(a−b)(a−c)+b^2/(b−a)(b−c)+c^2/(c−a)(c−b)=n
[4]a^3/(a−b)(a−c)+b^3/(b−a)(b−c)+c^3/(c−a)(c−b)=n
の自然数解(a,b,c)を求めよ.
===================================
[A]
[1]1/(a−b)(a−c)+1/(b−a)(b−c)+1/(c−a)(c−b)=0
[2]a/(a−b)(a−c)+b/(b−a)(b−c)+c/(c−a)(c−b)=0
[3]a^2/(a−b)(a−c)+b^2/(b−a)(b−c)+c^2/(c−a)(c−b)=1
[4]a^3/(a−b)(a−c)+b^3/(b−a)(b−c)+c^3/(c−a)(c−b)=a+b+c
より,[1][2]はn=0,[3]はn=1,[4]はn=a+b+cのとき,無限に整数解をもちます.
===================================