■ディオファントス・モーデル・マチアセビッチ(その39)
【4】フェルマーの主張(その2)
フェルマーの最終定理『x^n+y^n=z^nでn≧3のとき,x,y,zは正の整数解をもたない.』を解くことは,2変数n次多項式f(x,y)=x^n+y^n−1=0に,有理数解があるか,すなわち有理点をもつかどうかを考える問題に対応します.
モーデル・ファルティングスの定理によってフェルマーの方程式に解があるとすれば高々有限個しか解がないことはわかりましが,1つもないかどうかはわかりません.しかしながら,モーデル・ファルティングスの定理より,有理点が無数にあるような曲線は種数が0か1ということになり,直線(種数0)か,円錐曲線(種数0)か,楕円曲線(種数1)に限られてきます.
また,リーマン・フルヴィッツの公式より,フェルマー曲線x^n+y^n=1は種数が(n−1)(n−2)/2で,これはn=3のとき1ですが,n≧4のときは2以上となりますから,そこでフェルマーの予想を征するために必要となるのが楕円曲線であったというわけです.
こうして,1970年代,フェルマーの問題を征するために必要となるのが楕円曲線であることが明らかになりました.楕円曲線には,楕円曲線と三点で交わる直線で,そのうちの二つの交点の座標がわかれば他の一点の座標も計算でき,二つの点の座標が有理数ならば,他の一点の座標も有理数であるなどの性質をもっています.
a^p+b^p=c^pを満たすような楕円曲線:
y^2=x(x+a^p)(x−b^p)
が保型関数によってパラメトライズできないことの証明がフェルマーの最終定理の証明に繋がるのですが,これ以上はかなりこみいった話になるので追求しないでおきましょう.(楕円曲線の有理点の有無ではなく,楕円曲線そのものが存在しないことを示すのである.)
===================================
【5】オイラー予想とその反例
オイラーは,フェルマー予想の条件をゆるめて一般化した問題
『x1^n+x2^n+・・・+xn-1^n=xn^n,たとえば,x^4+y^4+z^4=w^4にも自然数解がない』と予想しました.この不定方程式には整数解がないであろうことが長い間予想されていて,モーデルはコンピュータを使ってw<220000の範囲でこの問題は成立することを紹介しています.
オイラーの予想は正しいと信じられてきましたが,オイラーの推測からおよそ200年後,コンピュータを使って
27^5+84^5+110^5+133^5=144^5 (1966年)
95800^4+217519^4+414560^4=422481^4 (1988年)
2682440^4+15365639^4+18796760^4=20615073^4 (1988年)
などのオイラー予想に対する反例が発見されました.
反例が現れる網を絞り込んで,最後にコンピュータを使ってこの例を仕留めたのです.さらに,エルキースにより,x^4+y^4+z^4=w^4には無数の解があることが楕円曲線の理論に基づいて示されました(1988年).
===================================