■行列式の計算(その17)

  +1,−1を成分とする直交行列(アダマール行列とよばれる)は,FFT(高速フーリエ変換)の基本原理とも関係しているのであるが,全く無関係に見える幾何学的意味合いをもっています.

===================================

【1】アダマール行列

 アダマール行列Hnは+1か−1の要素をもつn×n行列で,その行と列は互いに直交している.各行または列のノルム(各要素の2乗和)はnであるから,

  HnHn’=Hn’Hn=nIn

が成り立つ.

  det|nIn|=n^n

より

  det|Hn|=n^n/2

===================================

【2】アダマールの定理

 もっと一般に,各成分が1か−1のn×n行列の行列式はn^n/2以下である.

 アダマールの定理の証明は,行列式の幾何学的意味を理解すれば簡単である.行列式の絶対値は,n個のそれぞれの長さ√nの行ベクトルが作るn次元平行六面体の体積だから,その値は(√n)^n=n^n/2以下である.等号はベクトル同士が全部直交するときに限る.

===================================