■行列式の計算(その6)

 A3型,D4型,E8型のディンキン図形は,

 

      3         1−2−3  (A3 )

     /                             

  1−2   (D4 )        4              

     \               |              

      4         1−2−3−5−6−7−8  (E8 )

そして,ディンキン図形に基づいて,隣接行列の要素bijを,

  それ自身のとき・・・・2

  結ぶ辺があるとき・・・1

  結ぶ辺がないとき・・・0

と定めます.

 これは,隣接行列{bij}が内積bi↑・bj↑からなるグラミアンによって定義され,その際,n次元平行多面体の基底となるn個のベクトルbkはすべて長さ√2,biとbjが隣り合うときは2つのベクトルは角度60°で交わり(内積=1),隣り合わないときは直交すること(内積=0)を意味しています.

 そうすれば,A3型,D4型,E8型に対応する隣接行列式|B|は,それぞれ

  |2 1 0|   |2 1 0 0|

  |1 2 1|   |1 2 1 1|

  |0 1 2|   |0 1 2 0|

            |0 1 0 2|

  |2 1 0 0 0 0 0 0|

  |1 2 1 0 0 0 0 0|

  |0 1 2 1 1 0 0 0|

  |0 0 1 2 0 0 0 0|

  |0 0 1 0 2 1 0 0|

  |0 0 0 0 1 2 1 0|

  |0 0 0 0 0 1 2 1|

  |0 0 0 0 0 0 1 2|

で定義され,格子群の基本領域の体積Vと最短距離dは

  G=(d^2/2)^n|B|=1=V^2

より求められます.極大格子については,現在のところ,n≦8のみ答えが知られています.

 

n   ルート   最小距離             球充填密度

1         1                1

2   A2    4√(4/3)  =1.075    0.906

3   A3    6√2      =1.122    0.740

4   D4    8√4      =1.189    0.619

5   D5    10√8     =1.231    0.465

6   E6    12√(64/3)=1.290    0.373

7   E7    14√64    =1.346    0.295

8   E8    √2      =1.414    0.254

 

 最小距離が√2となるn=8の場合が大変興味を惹かれます.7次元までの2次形式は単位行列から定まる2次形式

  x1^2+・・・+xn^2

と同型になるのですが,n=8ではこの情勢が覆り,同型ではないからです.

===================================

 これらの隣接行列式を展開すると,

  |A2 |=3,|A3 |=4,|D4 |=4,|D5 |=4,

  |E6 |=3,|E7 |=2,|E8 |=1

が得られる.それでは,

  |An |=?,|Dn |=?,|En |=?

はどうだろうか.

===================================