cosa=sinαcosγ/{(sinα)^2-(cosβ)}^1/2
cosc=sinγcosα/{(sinγ)^2-(cosα)}^1/2
cosb=cosαcosβcosγ/{(sinα)^2-(cosβ)}^1/2{(sinγ)^2-(cosα)}^1/2
(tana)^2=-G/(sinαcosγ)^2
(tanc)^2=-G/(sinγcosα)^2
(tanb)^2=-G(sinβ)^2cosβ/(cosαcosβcosγ)^2
===================================
直交双曲四面体では
cosha=sinαcosγ/{(sinα)^2-(cosβ)}^1/2
coshc=sinγcosα/{(sinγ)^2-(cosα)}^1/2
coshb=cosαcosβcosγ/{(sinα)^2-(cosβ)}^1/2{(sinγ)^2-(cosα)}^1/2
(tanha)^2=-G/(sinαcosγ)^2
(tanhc)^2=-G/(sinγcosα)^2
(tanhb)^2=-G(sinβ)^2cosβ/(cosαcosβcosγ)^2
===================================