■ディリクレの鳩(その35)
2次の無理数では,ある数cが存在して
|α−p/q|>c/q^2
がすべての有理数p/qに対して成り立つことが導かれたが,リューヴィルはこのような定理がより一般の任意の代数的無理数に対しても成立することを証明した.
すなわち,代数的数αの次数をn(≧2)とすると,
|α−p/q|>c/q^n
がすべての有理数p/qに対して成り立つ(リューヴィルの定理,1844年).
===================================
【1】ロスの定理
それでは,代数的数αに対して
|α−p/q|<1/q^k
を満たす有理数a/bは有限個しかないというkはいくつになるのだろうか? あるいは,任意の数cに対して
|α−p/q|>c/q^k
がすべての有理数p/qに対して成り立つkはいくつになるのだろうか?
この指数kを改良するために多くの研究がなされた.「ロスの定理」は最良のものである.
k≧n (リューヴィル,1844)
k>n/2+1 (トゥエ,1909)
k>2√n (ジーゲル,1921)
k>√(2n) (ダイソン,ゲルファント,1947)
k>2 (ロス,1955)
[補]ロスはドイツの数学者なので,ロートと訳すべきであった.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ロスの定理はkのある値に対して,
|α−p/q|>c/q^k
となるcの値が存在することを証明したが,cの値を具体的に定めることはできない.そうではあるが,特別な代数的数に対しては効果的な結果が得られている.たとえば,ベイカーは超幾何関数の性質を用いて,すべての有理数p/qに対して
|3√2−p/q|>10^-6/q^2.955
が成り立つことを証明した(1964年).n≧3の一般の代数的無理数に対するcの値を具体的に与えられる希望が見えてきたのである.
===================================