■反例集(その20)

【3】最小表面積の空間充填多面体の反例

[1]ウィア・フェランの極小曲面

 同じ体積の泡が集まっているときに,境界面積が最小となる泡の形は何だろうかという問いに対して,ケルビンの14面体(4^66^8)は100年以上もの間,最も効率よく空間を充填する多面体として最善の答であったが,本当に表面積を最小化する多面体であるのかというと否定的であって,実はこの問題はいまでも未解決問題となっている.

 もし,体積が同じで形の異なる2種類の多面体を組み合わせてみたら,ケルビン問題の反例がみつかるのでは・・・.そして,1994年,アイルランドの物性物理学者,ウィアは合金構造をヒントにもっと面積が小さくなる解を発見した.それは同じ体積の2種類の多面体による空間充填であって,不等辺五角形の面をもつ12面体(5角形12枚)と14面体(5角形12枚と6角形2枚)が1:3の割合で並ぶものである.

 もちろん,この12面体は正十二面体ではないし14面体もケルビンの14面体ではない.そして,ウィアの空間充填ではウィリアムズの14面体(4^25^86^4)の場合と同様に辺や面には微妙な曲がりが含まれている.また,ウィアの空間充填ではウィリアムズの14面体よりも多くの五角形の面をもつという特徴もあげられる.

 そしてこれらの多面体の表面積はケルビンの14面体よりも0.3%小さいことが判明したのである.曲面の高精度計算がコンピュータでできるようになったことがこの新発見に繋がったのであるが,辺や面を微妙に調節することによって空間充填が可能となる.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[2]クラスレート水和物の世界

 クラスレート水和物は小さな分子を水分子が取り囲んだかご状構造体である.メタンハイドレートはその1例で,かご状構造体として安定化する.水和物の世界では,単独の空間充填多面体としてケルビンの14面体(4^66^8)やウィリアムズの14面体(4^25^86^4),2種類以上の多面体(曲面)の組合せによる空間充填としてはウィアの12面体・14面体の組合せ以外にも12面体(5^12)と16面体(5^126^4)の2種類の組合せ,12面体(5^12),12面体(4^35^66^3),20面体(5^126^8)の3種類の組合せが知られている.

 これらのなかで普遍的に認められるのは後3者で,それぞれ構造体T,U,Hと呼ばれている.構造体Tがウィア・フェランの極小曲面に相当するものである.ウィリアムズの14面体型(4^25^86^4)は比較的最近発見されたクラスレート水和物であって,特殊な物理的環境下でしか存在しない.

 このことから,等積空間充填多面体では5角形の頻度が最も高いと事実を窺い知ることができるだろう.それに対して,切頂八面体を含むケルビンの14面体はまったく5角形面をもたない.14面体の面のかたちについては,オイラーの多面体定理より必然的に辺数5を中心とする分布をなすことが計算されるのだが,どうして5角形の頻度が高くなるのだろうか?

 理由はシンプルであると考えられる.すべての面が六角形であるような多面体は存在しない.蜂の巣状六角形タイル貼りに五角形タイルを1つ入れるとその部分が盛り上がった曲面となる.五角形タイルの数を増やしていって12枚になったところで閉じた多面体となる.すなわち,6角形面を5角形面に変換することは平面構造からから球面構造への変換に繋がる.表面積は小さく体積は大きくというわけであるが,真空中ではともかく,水中の空間分割では丸くなることが重要な物理的要請になっていると考えられる.

 このような変換によって,側面に5角形を有する効率の良い空間分割を実現しているものと想像されるのであるが,ともあれウィアの極小曲面が最も境界面積が小さな形になっているかという問題はまだ解決されていない.「同じ体積の泡が集まっているときに,境界面積が最小となる泡の形は何か?」は,泡の種類を増やせば面積をもっと減らすチャンスがあり,それで科学者たちは現在もより効率の良い空間分割法を探索し続けているのである.

===================================