■サッカーボールの平和的利用(その19)
凸多面体の頂点,辺,面の数をそれぞれv,e,fとすると,
v−e+f=2 (オイラーの多面体定理)
が成り立ちます.これは3次元立体について,0次元の特性数であるv,1次元の特性数であるe,2次元の特性数であるfの関係を述べたものと解釈されます.
量(v−e+f)はオイラー標数と呼ばれます.オイラー標数は幾何学において重要な概念である位相不変量の草分けであり,一般に,図形がいくつかの3角形によって分割されているとき,
頂点の数−辺の数+3角形の数
は分割の仕方によらず定まり,図形に固有な量になるというものです.例えば,平面図形(多角形)は,1つの面が無限大となって全体が一面に広がってしまった正多面体と解釈することができますから,オイラー標数は1となり,また,種数(穴の数)gの向き付け可能な閉曲面の場合は2−2gとなることはよく知られています.
オイラーの多面体定理を一般化したものが,オイラー・ポアンカレの定理です.オイラー数はベッチ数の交代和
v−e+f−g+h−i+・・・
に等しいというのが,オイラー・ポアンカレの内容ですが,ベッチ数とは,簡単にいえば図形の中に潜む種々の次元の穴の数のことです.
===================================