■分割数の漸近挙動(その44)

【3】ロジャース・ラマヌジャン恒等式

 ヤコビの3重積公式はテータ関数そのものを表しているのであって,これから

  Σ(-1)^n・q^(n^2)=(q;q)∞/(-q;q)∞

  Σq^(n(n+1)/2)=(q^2;q^2)∞/(q;q^2)∞

  Σq^(k^2)/(q;q)k=1/(q;q^5)∞(q^4;q^5)∞

  Σq^(k(k+1))/(q;q)k=1/(q^2;q^5)∞(q^3;q^5)∞

  Σq^(k^2)/(q;q)2k=1/(q;q^2)∞(q^4;q^20)∞(q^16;q^20)∞

  Σq^(k(k+2))/(q;q)2k+1=1/(q;q^2)∞(q^8;q^20)∞(q^12;q^20)∞

  Σq^(k^2)/(q;q)k(q;q)n-k=Σ(-1)^k・q^{(5k^2-k)/2}/(q;q)n-k(q;q)n+k

  Σ2q^(k^2)/(q;q)k(q;q)n-k=Σ(-1)^k・(1+q^k)q^{(5k^2-k)/2}/(q;q)n-k(q;q)n+k

などの恒等式が得られる.

 このうち,後6者のq恒等式

  Σq^(k^2)/(q;q)k=1/(q;q^5)∞(q^4;q^5)∞  (第1恒等式)

  Σq^(k(k+1))/(q;q)k=1/(q^2;q^5)∞(q^3;q^5)∞  (第2恒等式)

  Σq^(k^2)/(q;q)2k=1/(q;q^2)∞(q^4;q^20)∞(q^16;q^20)∞

  Σq^(k(k+2))/(q;q)2k+1=1/(q;q^2)∞(q^8;q^20)∞(q^12;q^20)∞

  Σq^(k^2)/(q;q)k(q;q)n-k=Σ(-1)^k・q^{(5k^2-k)/2}/(q;q)n-k(q;q)n+k

  Σ2q^(k^2)/(q;q)k(q;q)n-k=Σ(-1)^k・(1+q^k)q^{(5k^2-k)/2}/(q;q)n-k(q;q)n+k

はロジャース・ラマヌジャン恒等式と呼ばれるものの例である.

 オイラー数は非制限分割数であるが,分割の構成数の差が2以上という制限を設けた分割と構成数が5n+1または5n+4の分割は恒に等しいというののが

  Σq^(k^2)/(q;q)k=1/(q;q^5)∞(q^4;q^5)∞

すなわち

  1+q/(1-q)+q^4/(1-q)(1-q^2)++q^9/(1-q)(1-q^2)(1-q^3)+・・・

  =1/(1-q)(1-q^4)(1-q^6)(1-q^9)(1-q^11)(1-q^14)(1-q^19)・・・

である.

 これらの分割恒等式は無名の数学者ロジャーズ(1894),また彼とは独立にラマヌジャン(1913)によって得られた.ロジャース・ラマヌジャン恒等式は,最初ロジャースにより発見されたのであるが,誰の興味も惹かず忘れ去られていたところ,ラマヌジャンにより別証明が与えられたというわけである.

 ロジャース・ラマヌジャン恒等式にはやさしい証明は存在せず,q二項係数とヤコビの三重積公式を使って証明される.ロジャース・ラマヌジャン型の恒等式は数論とのみ結びついていると考えられていたが,いまとなっては組合せ論を介して数理物理の計算に当たり前のように現れてくることが知られている.

===================================