■分割数の漸近挙動(その42)
k(k+1)/2という形の整数を三角数,k^2という形の整数を四角数,k(3k−1)/2という形の整数を五角数といいます.一般に,
k((m−2)k−m+4)/2
という形の整数をm角数といいます.
(a)オイラーの五角数定理(1750年)
Π(1-q^n)=Σ(-1)^mq^(m(3m-1)/2)) n:1~∞,m:-∞~∞,m(3m-1)/2は五角数
(b)ヤコビの三角数定理(1829年)
Π(1-q^n)^3=Σ(-1)^m(2m+1)q^((m^2+m)/2) n:1~∞,m:0~∞,(m^2+m)/2は三角数
はヤコビの三重積公式を使うとあっさり証明できます.まず,それをみていくことにしましょう.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[注][2][3]にはミスがあるのではないかと杉岡幹生氏に指摘された.『k(k−1)/2という形の整数を三角数,k^2という形の整数を四角数,k(3k−1)/2という形の整数を五角数といいます.一般に,k((m−2)k+m−4)/2という形の整数をm角数といいます.』がそれである.
慣用の定義を記しておくと『k(k+1)/2という形の整数を三角数,k^2という形の整数を四角数,k(3k−1)/2という形の整数を五角数といいます.一般に,k((m−2)k−m+4)/2という形の整数をm角数といいます.』であるが,これらの数の類似性から負の値での同じ形の数,たとえば,
(3n^2−n)/2 → (3n^2+n)/2 → (3n^2±n)/2
もまた五角数と呼ばれる.
===================================
【1】ヤコビの3重積公式
(a;q)n=(1-a)(1-aq)・・・(1-aq^(n-1))=Π(1-aq^k)
なる記号を導入すると
(q;q)n=(1-q)(1-q^2)・・・(1-q^n)=Π(1-q^k)
になるが,ヤコビの3重積公式
Σz^nq^(n(n+1)/2)=Π(1-q^n)(1+zq^n)(1+z^(-1)q^(n-1))
は
(x;q)∞(q/x;q)∞(q;q)∞=Σ(-1)^m・q^(m(m-1)/2)・x^m x=-z
と表現される.ヤコビの3重積公式はテータ関数そのものを表している.
[1]ヤコビの3重積公式において,qをすべてq^3に置き換え,x=qとすれば,左辺はΠ(1-q^3n)(1-q^3n-1)(1-q^3n-2)=Π(1-q^n)=(q;q)∞となり,
Π(1-q^n)=Σ(-1)^m・q^(m(3m+1)/2) (オイラーの5角数定理)
と表される.
オイラーは
(1)nが五角数でない限り,正の整数nを偶数個の異なる正の整数の和で表す方法の総数と奇数個の異なる正の整数の和で表す方法の総数が等しいこと,
(2)nが五角数ならば,正の整数nを偶数個の異なる正の整数の和で表す方法の総数−奇数個の異なる正の整数の和で表す方法の総数=(−1)^k,n=k(3k+1)/2
を示したことになる.
[2]また,qをすべてq^2に置き換え,x=qとすれば,左辺は
Π(1-q^2n)(1-q^2n-1)^2
ここで,異なる数への分割と奇数への分割が同数あるという結果に対応する
Π(1-q^2n-1)=Π1/(1+q^n)
より,
Π(1-q^n)/(1+q^n)=Σ(-1)^m・q^(m^2)
[3]今度はx=−qとすれば,(-1;q)∞=2Π(1+q^n)より,左辺は
2Π(1-q^2n)(1+q^n-1)=2Π(1-q^2n)/(1-q^2n-1)
右辺はΣ(-∞~∞)q^(m(m+1)/2)であるが,m(m+1)/2はm=-1/2について対称であるから和を取る範囲をm:-∞~∞からm:0~∞に狭めることができて
Σ(-∞~∞)q^(m(m+1)/2)=2Σ(0~∞)q^(m(m+1)/2)
これより
Π(1-q^2n)/(1-q^2n-1)=Σq^(m(m+1)/2) m:0~∞
[4]x=δとすれば,
(x;q)∞(q/x;q)∞(q;q)∞=(1-δ)(δq;q)∞(q/δ;q)∞(q;q)∞
Σ(-1)^m・q^(m(m-1)/2)・x^m=Σ(1~∞)(-1)^m・q^(m(m-1)/2)・(δ^m-δ^-m+1)=Σ(0~∞)(-1)^m+1・q^(m(m+1)/2)・δ^-m(δ^2m+1-1)
両辺を(1-δ)で割り,δ→1とすれば,
左辺→Π(1-q^n)^3
右辺→Σ(0~∞)(-1)^m-1・(2m+1)q^(m(m+1)/2)
より,
Π(1-q^n)^3=Σ(-1)^m(2m+1)q^((m^2+m)/2) (ヤコビの3角数定理)
===================================