■分割数の漸近挙動(その37)
(その36)の問題を一般化して
n=k1+2k2+3k3+・・・ (k1≧0,k2≧0,k3≧0,・・・)の個数p(n)を考えます.
このことから,分割数は以下の公式によって代数的に定義することができることがわかります.
f(x)=Π(1-x^n)^(-1)={(1-x)(1-x^2)・・・(1-x^n)・・・}^(-1)
=(1+x+x^2+・・・)(1+x^2+x^4+・・・)(1+x^3+x^6+・・・)(1+x^4+x^8+・・・)・・・
=Σp(n)x^n=1+p(1)x+p(2)x^2+p(3)x^3+・・・
すなわち,f(x)は分割関数p(n)の母関数で,p(n)はx^nの係数になっています.
x^k1を第1因子(1+x+x^2+・・・)の一般項,x^2k2を第2因子(1+x^2+x^4+・・・)の一般項,x^3k3を第3因子(1+x^3+x^6+・・・)の一般項,・・・とすると,
n=k1+2k2+3k3+・・・
となって,x^nの項が整数nの分割に対応することになるのですが,オイラーはこのようにしてp(n)の母関数
f(x)=Π(1-x^n)^(-1)={(1-x)(1-x^2)・・・(1-x^n)・・・}^(-1)
=Σp(n)x^n=1+p(1)x+p(2)x^2+p(3)x^3+・・・
を得たというわけです.
===================================
「分割数」とは与えられた整数にどれだけ多くの分割があるのか(4=1+1+1+1,4=3+1)という整数の分割理論のことです.整数の分割では,3=2+1と3=1+2のように足し算の順序が違うものは同じと見なすことにします.
たとえば,4を分割するには非増加数列で構成した5通りの方法,4=3+1=2+2=2+1+1=1+1+1+1がありますから,p(4)=5.同様にして,5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1よりp(5)=7となります.
===================================
また,オイラーは積Π(1-x^n)に対する注目すべき式
Π(1-x^n)=Σ(-1)^k・x^(3k^2+k)/2
を見出しました.
(ここでベキ級数の指数に初めて2次式が登場した.のちにヤコビにより一般的に研究された).
===================================