■分割数の漸近挙動(その11)

 「分割数」とは与えられた整数にどれだけ多くの分割があるのか(4=1+1+1+1,4=3+1)という整数の分割理論のことです.整数の分割では,3=2+1と3=1+2のように足し算の順序が違うものは同じと見なすことにします.

 たとえば,4を分割するには非増加数列で構成した5通りの方法,4=3+1=2+2=2+1+1=1+1+1+1がありますから,p(4)=5.同様にして,5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1よりp(5)=7となります.(分割を図形的に表す方法にヤング図形がある.ヤング図形は非増加な非負整数列を表現する印象的な方法である.)

 オイラーの5角数定理を用いると,分割関数に対する再帰関係式

  Σp(n-j(3j±1)/2)(-1)^j=0

  p(n)=p(n-1)+p(n-2)-p(n-5)-p(n-7)+p(n-12)+・・・

が得られます.これより

  p(0)=1,p(1)=1,p(2)=2,p(3)=3,p(4)=5,p(5)=7,p(6)=11,

  p(7)=15,p(8)=22,p(9)=30,p(10)=41,p(11)=56,p(12)=77,・・・

を効率的に計算することができます.

 ここで,p(n)はオイラーの分割関数とも呼ばれますが,定義が簡単そうにみえるにも関わらず,分割数を表す簡単な公式はありません.p(n)の正確な公式は,ラーデマッハーの公式(1937年)

  p(n)=1/π√2ΣAk(n)k^(1/2){d/dxsinh(π(2/3(x-1/24))^(1/2)/(x-1/24)^(1/2))

によって与えられます.ここで,Ak(n)は1の24乗根をもちいて明示的に与えることができます.

===================================

分割関数の母関数

  f(x)=Π(1-x^n)^(-1)={(1-x)(1-x^2)・・・(1-x^n)・・・}^(-1)

    =Σp(n)x^n=1+p(1)x+p(2)x^2+p(3)x^3+・・・

は,本質的にモジュラー形式を与えるので,ラーデマッハーはその保型性から明示公式にたどりついたのですが,ハーディーとラマヌジャンはその第一近似式を得たことになります.このことに関して,セルバーグは,ハーディーとラマヌジャンが明示公式までたどりつけなかった原因はハーディーがラマヌジャンを十分に理解できなかったことによると興味深いコメントを述べています.

===================================