■ペル方程式(その172)

結局

[1] x^2-Dy^2=1

[2] x^2-Dy^2=-1

[3] x^2-Dy^2=+/-1

のなかでは[2]が一番難しかったことになる。


===================================

[3]

y^2-2x^2=+/-1

(y,x)=(1,1)

√2の最良近似では

  (1+√2)^n=an+bn√2

  (1−√2)^n=an−bn√2

より

  an+1+√2bn+1=(1+√2)(an+√2bn)

          =(an+2bn)+√2(an+bn)

より

  an+1=an+2bn

  bn+1=an+bn

  an+1=an+2bn=an+2(an-1+bn-1)=an+2an-1+(an-1+2bn-1)=2an+an-1

  bn+1=bn+an=bn+(an-1+2bn-1)=bn+bn-1+(an-1+bn-1)=2bn+bn-1

 α,βを2次方程式x^2−2x-1=0の根(1±√2)として,初期値をa1=1,a2=3,b1=1,b2=2とすると

  an={α^n-1(a2−βa1)−β^n-1(a2−αa1)}/(α−β)

={α^n-1(3-(1-√2))−β^n-1(3-(1+√2))}/2√2

n=1:a1=1

n=2:a2=3

  bn={α^n-1(b2−βb1)−β^n-1(b2−αb1)}/(α−β)

={α^n-1(2-(1-√2))-β^n-1(2-(1+√2))}/2√2

n=1:b1=1

n=2:b2=2

となります.

===================================

[1]

(3+2√2)(3-2√2)=1

(3+2√2)^n(3-2√2)^n=1

  (3+2√2)^n=an+bn√2

  an+1+√2bn+1=(3+2√2)(an+√2bn)

[3]

(1+√2)(1-√2)=-1

(1+√2)^n(1-√2)^n=(-1)^n

  (1+√2)^n=an+bn√2

  an+1+√2bn+1=(1+√2)(an+√2bn)

[2]

(1+√2)(3+2√2)^n-1

  (1+√2)(3+2√2)^n-1=an+bn√2

  an+1+√2bn+1=(3+2√2)(an+√2bn)・・・ここの形は[1]と同型

===================================