■ペル方程式(その172)
結局
[1] x^2-Dy^2=1
[2] x^2-Dy^2=-1
[3] x^2-Dy^2=+/-1
のなかでは[2]が一番難しかったことになる。
===================================
[3]
y^2-2x^2=+/-1
(y,x)=(1,1)
√2の最良近似では
(1+√2)^n=an+bn√2
(1−√2)^n=an−bn√2
より
an+1+√2bn+1=(1+√2)(an+√2bn)
=(an+2bn)+√2(an+bn)
より
an+1=an+2bn
bn+1=an+bn
an+1=an+2bn=an+2(an-1+bn-1)=an+2an-1+(an-1+2bn-1)=2an+an-1
bn+1=bn+an=bn+(an-1+2bn-1)=bn+bn-1+(an-1+bn-1)=2bn+bn-1
α,βを2次方程式x^2−2x-1=0の根(1±√2)として,初期値をa1=1,a2=3,b1=1,b2=2とすると
an={α^n-1(a2−βa1)−β^n-1(a2−αa1)}/(α−β)
={α^n-1(3-(1-√2))−β^n-1(3-(1+√2))}/2√2
n=1:a1=1
n=2:a2=3
bn={α^n-1(b2−βb1)−β^n-1(b2−αb1)}/(α−β)
={α^n-1(2-(1-√2))-β^n-1(2-(1+√2))}/2√2
n=1:b1=1
n=2:b2=2
となります.
===================================
[1]
(3+2√2)(3-2√2)=1
(3+2√2)^n(3-2√2)^n=1
(3+2√2)^n=an+bn√2
an+1+√2bn+1=(3+2√2)(an+√2bn)
[3]
(1+√2)(1-√2)=-1
(1+√2)^n(1-√2)^n=(-1)^n
(1+√2)^n=an+bn√2
an+1+√2bn+1=(1+√2)(an+√2bn)
[2]
(1+√2)(3+2√2)^n-1
(1+√2)(3+2√2)^n-1=an+bn√2
an+1+√2bn+1=(3+2√2)(an+√2bn)・・・ここの形は[1]と同型
===================================