五角数について検算.
Σ2/n(3n-1) (n=1~)
=Σ2/(n+1)(3n+2) (n=0~)
=2/3Σ1/(n+1)(n+2/3) (n=0~)
=2Σ{1/(n+2/3)-1/(n+1)} (n=0~)
Σ{1/(n+p/q)-1/(n+1)}
=π/2・cotpπ/q+log2q-2Σcos2pkπ/q・logsinkπ/q (0<k<q/2)
Σ{1/(n+2/3)-1/(n+1)}=
=π/2・cot2π/3+log6-2{cos4π/3・logsinπ/3}
=-π/2√3+log6-2{-1/2・log√3/2}
=-π/2√3+log2+log3+1/2log3-log2
=-π/2√3+3/2・log3
したがって,
Σ2/n(3n-1)=3log3-π/√3 (OK)
===================================