■多角数の逆数和(その45)
Σ2/n(3n−1) (n=1〜)
=Σ2/(n+1)(3n+2) (n=0〜)
=6Σ1/(n+1)(n+2/3) (n=0〜)
=2Σ{1/(n+2/3)−1/(n+1)} (n=0〜)
Σ{1/(n+2/3)−1/(n+1)}=−π/2√3+log12−2{−1/2・log1/2−1/2・log√3/2}
=−π/2√3+2log2+log3−log2+(1/2・log3−log2)
=−π/2√3+3/2・log3
したがって,
Σ2/n(3n−1)=3log3−π/√3
===================================