■多角数の逆数和(その37)
八角数について検算.
Σ2/n(6n−4) (n=1〜)
=Σ2/(n+1)(6n+2) (n=0〜)
=Σ1/(n+1)(3n+1) (n=0〜)
=1/3Σ1/(n+1)(n+1/3) (n=0〜)
=1/2・Σ{1/(n+1/3)−1/(n+1)} (n=0〜)
Σ{1/(n+p/q)−1/(n+1)}
=π/2・cotpπ/q+log2q−2Σcos2pkπ/q・logsinkπ/q (0<k<q/2)
Σ{1/(n+1/3)−1/(n+1)}
=π/2・cotπ/3+log6−2{cos2π/3・logsinπ/3}
=π/2・(1/√3)+log6−2{−1/2・log√3/2}
=π/2√3+log3+log2+1/2log3−log2
=π/2√3+3/2・log3
したがって,この1/2倍が解となる.
π/4√3+3/4・log3=1.27741・・・
===================================