■ペル方程式(その3)

 ペル方程式:x^2−dy^2=1について,フェルマーは少なくとも1つの自明でない整数解((x,y)=(±1,0)以外の解が存在するだろうと予想しましたが,この予想は1768年,ラグランジュにより証明されています.

 この方程式は無限に多くの解をもち,基本解(最小の整数解)を(x,y)とおくと一般解は

  ±(x+y√d)^n   n=0,±1,±2,・・・

により与えられます.ペル方程式は√dの最良近似値を次々に生成する所以です.

 基本解の求め方については(その2)で説明したとおりです.今回のコラムではまずd=2の場合を扱ってみましょう.

===================================

 Q(√2)ではε=1+√2が基本単数ですが,その他の解は

  (1+√2)^n=an+bn√2

により与えられます.

  (1+√2)(1−√2)=−1

  (1+√2)^2(1−√2)^2=1

  (1+√2)^3(1−√2)^3=−1

  (1+√2)^4(1−√2)^4=1

より,x^2−2y^2=±1の解を(tn,un),

   x^2−2y^2=1の解を(xn,yn),

   x^2−2y^2=−1の解を(rn,sn)

とおくと

  tn+√2un=(1+√2)^n

  xn+√2yn=(1+√2)^2n(3+2√2)^n

  rn+√2sn=(1+√2)^2n-1=(1+√2)(3+2√2)^n-1

で与えられます.

  tn+1+√2un+1=(1+√2)(tn+√2un)

          =(tn+2un)+√2(tn+un)

より

  tn+1=tn+2un

  un+1=tn+un

  cn =[tn,un]’   A=[a,b]=[1,2]

                 [c,d] [1,1]

とおくと,cn+1=Acn,cn+2=Acn+1=A^2cn

 ここで,ケーリー・ハミルトン方程式

  A^2=(trA)A−(detA)I

より

  cn+2 =A^2cn=(trA)Acn−(detA)Icn

     =(trA)cn+1−(detA)cn

     =(a+d)cn+1−(ad−bc)cn

     =2cn+1+cn

 ところで,ペル数列(an=2an-1+an-2)

  1,2,5,12,29,70,169,408,・・・

の特性方程式

  x^2−2x−1=0

の2根を

  γ=1+√2,δ=1−√2

とおくと,ペル数列の一般項は,

  Pn =1/2√2(γ^n−δ^n)

 また,連続する2項の比は

  1+√2

に次第に近づくことになります.

  tn =1/2(γ^n+δ^n)

  un =1/2√2(γ^n−δ^n)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

  xn+1+√2yn+1=(3+2√2)(xn+√2yn)

          =(3xn+4yn)+√2(2xn+3yn)

  cn+2 =6cn+1−cn

  α=3+2√2,β=3−2√2

  xn =1/2(α^n+β^n)

  yn =1/2√2(α^n−β^n)

==================================

【2】√dの近似値とチェビシュフ多項式

   x^2−dy^2=1の最小解を(x1,y1),

   x^2−dy^2=−1の最小解を(r1,s1)

とおくと,漸化式

  cn+2 =2x1cn+1−cn   (c=x,y,r,s)

  cn+2 =2r1cn+1+cn   (c=t,u)

が成り立つ.

 ところで,ド・モアブルの定理:

  (cosθ+isinθ)^n=cosnθ+isinnθ

の左辺を2項展開して,両辺の実部,虚部を比較すると

  cosnθ=(cosθ)^n−nC2(cosθ)^n-2(sinθ)^2+・・・=(cosθのn次多項式)=Tn(cosθ)

  sinnθ=nC1(cosθ)^n-1sinθ−nC3(cosθ)^n-3(sinθ)^3+・・・=sinθ×(cosθのn−1次多項式)=sinθ×Un(cosθ)

を得る.

 また,

  cosnθ=cosθcos(n−1)−sinθsin(n−1)θ

  sinnθ=sinθcos(n−1)+cosθsin(n−1)θ

より,漸化式

  Tn(cosθ)=cosθTn-1(cosθ)−(sinθ)^2Un-1(cosθ)

  Un(cosθ)=Tn-1(cosθ)+cosθUn-1(cosθ)

  Tn(cosθ)=2cosθTn-1(cosθ)−Tn-2(cosθ)

  Un(cosθ)=2cosθUn-1(cosθ)−Un-2(cosθ)

が成り立つ.

 cosθ=xの多項式で表すと,チェビシュフ多項式は

  Tn(x)=2xTn-1(x)−Tn-2(x)

  Un(x)=2xUn-1(x)−Un-2(x)

となり,前述の漸化式と一致していることがわかる.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 したがって,

  xn=Xn(x1),yn=y1Yn(x1)

  tn=Vn(t1),un=u1Wn(t1)

とおくと,チェビシュフ多項式を用いて

  xn=Tn(x1),yn=y1Un-1(x1)

  tn=T~n(t1),un=u1U~n-1(t1)

  xn=T~2n(t1),yn=u1U~2n-1(t1)

  rn=T~2n-1(r1),sn=s1U~2n-2(r1)

と表される.

 ただし,T~n,U~nはチェビシェフ多項式Tn,Unの負の符号を正に変えたものである.以下,チェビシェフ多項式を示しておく.

T0(x)=1         T~0(x)=1        

T1(x)=x         T~1(x)=x        

T2(x)=2x^2−1     T~2(x)=2x^2+1    

T3(x)=4x^3−3x    T~3(x)=4x^3+3x   

T4(x)=8x^4−8x^2+1 T~4(x)=8x^4+8x^2+1

U0(x)=1         U~0(x)=1       

U1(x)=2x         U~1(x)=2x       

U2(x)=4x^2−1     U~2(x)=4x^2+1   

U3(x)=8x^3−4x    U~3(x)=8x^3+4x  

U4(x)=16x^4−12x^2+1 U~4(x)=16x^4+12x^2+1

===================================