■ケプラーの球体充填問題(その21)
[1]Ln=n([2^(n-2)/3]+n+1)=n(n+「2^n/12」)
n 1 2 3 4 5 6 7 8
Ln 2 6 12 24 40 72 126 240
[2]Mn)≦2Fn-1(θ)/Fn(θ)
n 4 5 6 7 8 9 10 11 12
Mn 26 48 85 146 244 401 648 1035 1637
[3]Ln≦τn≦Mn
===================================
以下に,現在知られている上界・下界を記しますが,コクセターの方法は,現在知られている上界よりほんの少し大きい方に偏っていることがわかります.このようにτnの知られている上限と下限の間の差はまだ非常に大きいといえます.
n τn n τn
1 2 13 1130〜2233
2 6 14 1582〜3492
3 12 15 2564〜5431
4 24〜25 16 4320〜8313
5 40〜46 17 5346〜12215
6 72〜82 18 7398〜17877
7 126〜140 19 10668〜25901
8 240 20 17400〜37974
9 306〜380 21 27720〜56852
10 500〜595 22 49896〜86537
11 582〜915 23 93150〜128096
12 840〜1416 24 196560
===================================