■ケプラーの球体充填問題(その3)

2000年の記事を再掲

1958年,ロジャースが四面体配置から,空間充填率の上限を3√2(cos-11/3−π/3)=77.96%とはじき出しました.四面体配置は,3次元で相互に接するように球を配置するときの最大数となる配置ですが,全空間を充たすことはできないので,空間充填率の上限と考えられるわけです.また,1988年には,この上限はわずかに改良され,77.84%よりも高密度の詰め込みは存在しないことが証明されています.これを74.04%まで引き下げることができれば,面心立方格子が最密充填構造だという証明になるのですが,残念ながら,上限の引き下げは骨の折れる厄介なプロセスであり,遅々として進んでいません.球の最密充填構造については,わずか数%の差であるにもかかわらず,また,何世紀にもわたる研究にもかかわらず未解決で,数学の未解決問題として有名なものの一つになっています.まだこんなことがわかっていないのです.

===================================

【kissing numberの問題】

 1つの10円玉を机の上において,それと触れ合うようにかつお互いに重ならないようにして,6個の10円玉を置くことができます.一般に,n次元ユークリッド空間において,1つの単位球に同時に接触することのできる単位球の最大個数τn は接吻数(kissing number)あるいは接触数(contact number)と呼ばれていて,最密充填構造と深い関連があります.

 10円玉の例からわかるようにτ2=6ですが,n≧3のとき,τn はどうなるでしょうか? まず,3次元の場合,単位球のまわりに面心立方格子状に単位球を置いた場合の接触点

  1/√2(±1,±1,0)

  1/√2(±1,0,±1)

  1/√2(0,±1,±1)

を考えてみると,これら12個の相異なる2点に対応するベクトルの内積は,−1,±1/2,0のいずれかであり,したがって,その間の角度(球面距離)は60度以上となりますから,これらの点で接するように12個の単位球を置くことができます.したがって,τ3≧12は直ちにわかります.

実際,正20面体の12個の頂点に対して,そこで接するように12個の単位球を置くことができます.この場合,頂点間の角度は約63゜26′になり,12個の球は互いに接触しておりません.少しだけなら自由に動かせるという状況ですから,その隙間を一つに集めたらもう一個球が入るのではないでしょうか? ところが,これができるかできないかはあまり自明ではありません.

 球の最大接触数τ3については,1694年にニュートンとグレゴリーの間で議論され,ニュートンは12を,グレゴリーは13を主張したといわれています.結局,ニュートンは12個が最大であるという証明ができず,グレゴリーも13個並べたわけではないので,ニュートンの13球問題と呼ばれるこの論争は引き和けに終わりました.1874年,ホッペが12個が最大であることという証明を試みましたが,不備があり,ようやく完全な証明がなされたのは1953年,ファン・デル・ヴェルデンとシュッテによってです.つまり,3次元空間内で1つの球には同時に12個の球しか接することができません.3次元のときは12個という解が得られるまで非常に長い年月がかかったことになります.

 

 4次元の場合はどうなるでしょうか? 24個の面心立方格子状配置の接触点

  1/√2(±1,±1,0,0)

  1/√2(±1,0,±1,0)

  1/√2(±1,0,0,±1)

  1/√2(0,±1,±1,0)

  1/√2(0,±1,0,±1)

  1/√2(0,0,±1,±1)

で重ならないように置けるので,τ4≧24は明らかです.また,τ4≦25は示されていますが,現在でもτ4が24であるか25であるかは未解決です.

 

 τnの正確な値を決定する問題は大変難しく,4次元以上の高次元については,高度に対称的な格子状配置になっている8次元(240個)と24次元(196560個)の場合を除いて未解決であり,現在,正確な値が知られているのは,τ1=2,τ2=6,τ3=12,τ8=240,τ24=196560の5つだけなのです.

 少し詳細に調べていきましょう.4次元,5次元においては面心立方格子の類似品となりますが,6次元以上についてはそのようなことはもはや成立しなくなります.次元の上昇とともに,超球の間の隙間が大きくなっていくからです.8次元になると面心立方格子に十分な隙間ができるので,112個の接触点

  1/√2(0,・・・,±1,0,・・・,±1,0・・・)   (±1の個数は2つ)

と128個の隙間の点

  1/√8(±1,±1,±1,±1,±1,±1,±1,±1)   (+の個数は偶数) に同じ大きさの球が詰め込み可能になります.専門的になりますが,τ8の240個の点はE8型の単純リー代数の240個のルート格子で実現されます.さらに,この詰め込みの断面が6次元と7次元のもっとも効率のいい格子状詰め込みを与えてくれます.

 また,1965年,リーチは群論と深く結びついた今日リーチ格子として知られるようになったものに基づいて,24次元空間の格子状詰め込みを構成しました.この詰め込みにおいては,なんと1つの超球に196560個もの超球が接触しています.τ24の196560個の点はリーチ格子の原点から一番近い点の集合として得られることが知られています.

 こうして,Odlyzko & Sloaneによって,n≦24のときのすでに知られている上界・下界が与えられています.

n     τn

1       2

2      6

3      12

4     24〜25

5     40〜46

6     72〜82

7    126〜140

8      240

9    306〜380

10    500〜595

・・・・・・・・・・・・・・・・・・・

24    196560

 

 球の最密パッキングの研究は,2次形式の数論,ルート系,誤り訂正符号,有限単純群などの理論と関係し,最大の信頼性と最小の電力で伝送できる効率的な通信システムの設計に応用されています.とくに,リーチ格子の発見により,データ転送における誤り訂正符号の発見に大革新がもたらされましたが,通信技術への応用は球の詰め込み問題の四次元以上への一般化の結果としてなされたものであり,純粋数学の期待せざる応用の一例といってもよいでしょう.

===================================