■4平方和定理と290定理(その14)

 ラグランジュの定理:どんな自然数でも

  x^2+y^2+z^2+w^2

の形に書ける.それでは,どんな自然数でも

  Ax^2+By^2+Cz^2+Dw^2

で書けるだろうか?

 すべての整数はAx^2+By^2+Cz^2+Dw^2の形に表せるが,それは54通りの組み合わせしかないことが知られている(ラマヌジャン).

===================================

【1】ラマヌジャンのリスト(A,B,C,D)

 (1,1,1,1),(1,1,1,2),(1,1,1,3)

 (1,1,1,4),(1,1,1,5),(1,1,1,6)

 (1,1,1,7),(1,1,2,2),(1,1,2,3)

 (1,1,2,4),(1,1,2,5),(1,1,2,6)

 (1,1,2,7),(1,1,2,8),(1,1,2,9)

 (1,1,2,10),(1,1,2,11),(1,1,2,12)

 (1,1,2,13),(1,1,2,14),(1,1,3,3)

 (1,1,3,4),(1,1,3,5),(1,1,3,6)

 (1,2,2,2),(1,2,2,3),(1,2,2,4)

 (1,2,2,5),(1,2,2,6),(1,2,2,7)

 (1,2,3,3),(1,2,3,4),(1,2,3,5)

 (1,2,3,6),(1,2,3,7),(1,2,3,8)

 (1,2,3,9),(1,2,3,10),(1,2,4,4)

 (1,2,4,5),(1,2,4,6),(1,2,4,7)

 (1,2,4,8),(1,2,4,9),(1,1,2,9)

 (1,2,4,10),(1,2,4,11),(1,2,4,12)

 (1,2,4,13),(1,2,4,14),(1,2,5,6)

 (1,2,5,7),(1,2,5,8),(1,2,5,9)

 (1,2,5,10)

 どんな自然数でも

  x^2+2y^2+3z^2+4w^2

で書けるのである.

===================================

 どんな自然数でも

  a^2+2b^2+5c^2+5d^2+15e^2

で書けるのであるが、どうやって証明したらよいだろうか?

15の定理を使ってみよう。すなわち、1,2,3,5,6,7,10,14,15を表現することを示せばよい。

f(1,0,0,0,0)=1

f(0,1,0,0,0)=2

f(1,1,0,0,0)=3

f(0,0,1,0,0)=5

f(1,0,1,0,0)=6

f(0,1,1,0,0)=7

f(0,0,1,1,0)=10

f(2,0,1,1,0)=14

f(0,0,0,0,1)=15

===================================