■パラメータ解(その53)

[1]三角数:n(n+1)/2

[2]四角数:n^2=n(2n−0)/2

[3]五角数:n(3n−1)/2

[4]六角数:n(4n−2)/2

[5]七角数:n(5n−3)/2

[6]八角数:n(6n−4)/2

===================================

三角数をn角錐状に積み上げてみよう

[1]三角錐数:Σk(k+1)/2=n(n+1)(2n+1)/12+n(n+1)/4=n(n+1)/12・{2n+1+3}=n(n+1)(n+2)/6

[2]四角錐数:Σk^2=n(n+1)(2n+1)/6

[3]五角錐数:Σk(3k-1)/2=n(n+1)(2n+1)/4-n(n+1)/4=n(n+1)/4・{2n+1-1}=n^2(n+1)/2

[4]六角錐数:Σk(2k-1)=n(n+1)(2n+1)/3-n(n+1)/2=n(n+1)/12・{8n+4-6}=n(n+1)(4n-1)/6

[5]七角錐数:Σk(5k-3)/2=5n(n+1)(2n+1)/12-3n(n+1)/4=n(n+1)/12・{10n+5-9}=n(n+1)(5n-2)/6

[6]八角錐数:Σk(3k-2)=n(n+1)(2n+1)/2-n(n+1)=n(n+1)/2・{2n+1-2}=n(n+1)(2n-1)/2

===================================

[1]三角錐数:n(n+1)(n+2)/6

[2]四角錐数:n(n+1)(2n+1)/6

[3]五角錐数:n(n+1)(3n+0)/6

[4]六角錐数:n(n+1)(4n-1)/6

[5]七角錐数:n(n+1)(5n-2)/6

[6]八角錐数:n(n+1)(6n-3)/6

===================================

[3]五角数:n(3n−1)/2

1,5,12,22,35,51,70,92,・・・

階差をとると

4,7,10,13,16,19,22,・・・

Pn=Pn-1+3n-2

Pn=1+4+7+・・・+(3n-5)+(3n-2)

逆順で書いてみると

Pn=(3n-2)+(3n-5)+・・・+7+4+1

辺々加えると

pn=n(3n-1)/2

P10=145

P100=14950

===================================