■パラメータ解(その17)

 (その15)に掲げた問題は

[Q]△=□?,すなわち,三角数n(n+1)/2が完全平方数m^2となるnの値を求めよ.

===================================

[A]n^2+n=2m^2

になるのですが,両辺を4倍して1加えます.すると

  4n^2+4n+1=8m^2+1

  (2n+1)^2=2(2m)^2+1

ここで,2n+1=p,2m=qとおくと

  p^2−2q^2=1  (ペル方程式)

に帰着されます.

 √2の最良近似分数列p/q

  1/1,3/2,7/5,17/12,41/29,99/70,239/169,577/408,・・・

において,

  p^2−2q^2=±1  (ペル方程式)

の±1は交互に繰り返し現れます.

  2^2+2^2=3^2−1

  5^2+5^2=7^2+1

  12^2+12^2=17^2−1

  ・・・・・・・・・・・・・

 したがって,

  (p,q)=(3,2),(17,12),(99,70),(577,408),(3363,2378),・・・

 →(n,m)=(1,1),(8,6),(49,35),(288,204),(1681,1189),・・・nは完全平方と完全平方の2倍を交互に繰り返します.

===================================