■パラメータ解(その4)
【1】フェルマーの構成法
2^nabと2^ncは親和数のペアである.
a=3・2^n−1(素数)
b=3・2^n-1−1(素数)
c=9・2^2n-1−1(素数)
p=b=3・2^n-1−1とおくと
q=2p+1=3・2^n−1=a
r=pq+p+q=9・2^n-1−3・2^n−3・2^n-1+1+3・2^n-1−1+3・2^n−1=9・2^2n-1−1=c
であるから,これはイブン・クッラの公式と同じものである.
===================================
【2】イブン・クッラの公式
p=3・2^n-1−1
q=2p+1
r=pq+p+q
がすべて素数ならば,M=2^npq,N=2^nrのペアは親和数になる.
n=2→(220,284)
n=4→(17296,18416) (フェルマー)
n=7→(9363584,9437056) (デカルト)
なお,この公式で小さい方は四面体数
n(n+1)(n+2)/6
になる.
===================================
[証]
pq<pq+p+q
pq=p(2p+1)=(3・2^n-1−1)(3・2^n−1)
=(3・2^n-1−1)(6・2^n-1−1)=18・2^2n-2−9・2^n-1+1
N=2^npq=18・2^3n-2−9・2^2n-1+2^n
=9/2・2^3n−9/2・2^2n+2^n=m(m−1)(m−2)/6
m(m−1)(m−2)=27・2^3n−27・2^2n+6・2^n
m=3・2^n
===================================