■フィボナッチ数と表現(その5)

 

Fn=Π(1+4cos^2(kπ/n),k=1〜[n/2]Π

は,

Zn(s)=i^-n△n(is)より

Zn(s)=Π(s−2icos(kπ/(n+1))

Zn(1)=Fn+1

を用いると簡単に示すことができる.

===================================

Fn=Zn-1(1)

=Π(1−2icos(kπ/n))

=Π(1+4cos^2(kπ/n))

=Π(3+2cos(2kπ/n))

Fn=Π(1+4cos^2(kπ/n),k=1〜[n/2]Π

===================================