■高次元の結晶構造(その11)

  n+1Sk=nSk-1+knSk

  nTk=k!・nSk

ですから

  k!・n+1Sk=n+1Tk

  k!・nSk-1=knTk-1

  k!・nSk=nTk

  n+1Tk=knTk-1+knTk

===================================

  nTk=Σ(0,k)(−1)^k-jkCjj^n

  nTk=kn-1Tk-1+kn-1Tk

とデーン・サマービル関係式

  fk=Σ(0,k)(−1)^j(n−j,n−k)fj

を比較してみよう.

 このままでは比べにくいから,前者のパラメータをj→k−jに変えてみると

  nTk=Σ(0,k)(−1)^jkCj(k−j)^n

となる.これより

  kCj(k−j)^n=(n−j,n−k)fj

となるかどうかは疑問であるが,ともあれ比較しやすい形にはなったわけである.

===================================

 以上は多面体的組み合わせ論の結果であるが,幾何学的には

  fk=Σ(0,k)(n+1,j+1)f(k-j)^(n-1ーj)

の形で求められるから,これも

  (−1)^jkCj(k−j)^n=(n+1,j+1)f(k-j)^(n-1ーj)

  f(k-j)^(n-1ーj)=(−1)^jkCj(k−j)^n/(n+1,j+1)

あるいは

  (−1)^j(n−j,n−k)fj=(n+1,j+1)f(k-j)^(n-1ーj)

となるかどうかは疑問であるが,ともあれ比較しやすい形にはなったわけである.

  fk=Σ(0,k)(n+1,j+1)f(k-j)^(n-1ーj)

と比較するならば,

  nTk=k・n-1Tk-1+k・n-1Tk

であろう.

===================================