■フィボナッチ数列の分布法則(その164)

パラメータのずれを見てみたい

===================================

【1】フィボナッチ数とリュカ数

 an=an-1+an-2という漸化式で生成される数列の特性方程式

  x^2−x−1=0

の2根を

  α=(1+√5)/2,β=(1−√5)/2

とおくと,フィボナッチ数列

  1,1,2,3,5,8,・・・

の一般項は,

  Fn =1/√5(α^n+1−β^n+1)   (n:0~)

 リュカ数列

  2,1,3,4,7,11,・・・

の一般項は

  Ln=α^n+β^n   (n:0~)

で表されます.

===================================

【2】カッシーニの等式

  α=(1+√5)/2,β=(1−√5)/2

とおくと,フィボナッチ数

  fn=1/√5{α^n+1−β^n+1}

とリュカ数

  Ln=α^n+β^n

に対して,関係式(カッシーニの等式)

  Fn+1Fn-1−Fn^2=−(−1)^n

  Ln+1Ln-1−Ln^2=5(−1)^n+1

が示されます.

===================================