■フィボナッチ数列の分布法則(その161)
5(Fn)^2-(Ln)^2=4(-1)^n+1
は簡単に証明できる、かつ、すぐにでも思いつくべき性質であった。
===================================
F2n+1=(Fn+1)^2+(Fn)^2
Fn+2Fn-1=(Fn+1)^2-(Fn)^2
Fn+1Fn-1-(Fn)^2=(-1)^n
Fn=FmFn+1-m+Fm-1Fn-m
Ln+m+(-1)^mLn-m=LmLn
L2n+2(-1)^2=(Ln)^2
Ln-1+Ln+1=5Fn
Fn-1+Fn+1=Ln
Fn+2-Fn-2=Ln
Fn+Ln=2Fn+1
F2n=FnLn
Fn+1Ln+1-FnLn=F2n+1
Fn+m+(-1)^nFn-m=LmFn
Fn+m-(-1)^nFn-m=FmLn
LmFn+LnFm=2Fn+2
LmFn-LnFm=(-1)^m2Fn-2
Lm+n-(-1)^mLn-m=5FmFn
(Ln)^2-2L2n=-5(Fn)^2
L2n-2(-1)^2=5(Fn)^2
5(Fn)^2-(Ln)^2=4(-1)^n+1
3Fn+Ln=2Fn+2
5Fn+3Ln=2Ln+2
Ln=Fn+2+2Fn-1
Ln=L1Fn+L0Fn-1
===================================