■楕円曲線と弾性曲線(その14)
logx=∫(1,x)dt/t
arctanx=∫(0,x)dt/(1+t^2)
より,有理関数
t/(at+b),(dt+e)/(at^2+bt+c)
の積分は,logxないしarctanxに帰着される.
===================================
[1]∫dx/(1+x^2)=arctanx
[2]∫dx/(1+x^2)^1/2=log(x+(1+x^2)^1/2)
[3]∫(1+x^2)^1/2dx=1/2・x(1+x^2)^1/2+1/2・log(x+(1+x^2)^1/2)
===================================
[2]∫dx/(1+x^2)^1/2=log(x+(1+x^2)^1/2)
t=x+(1+x^2)^1/2とおく.
x=(t^2−1)/2t,dx=(1+t^2)/2t^2dt
(1+x^2)^1/2=t−x=(1+t^2)/2t
したがって,
∫dx/(1+x^2)^1/2=∫2t/(1+t^2)・(1+t^2)/2t^2dt
=∫dt/t=logt=log(x+(1+x^2)^1/2)
===================================
[3]∫(1+x^2)^1/2dx=1/2・x(1+x^2)^1/2+1/2・log(x+(1+x^2)^1/2)
∫(1+x^2)^1/2dx=∫(1+t^2)/2t・(1+t^2)/2t^2dt
=1/4・∫(t^4+2t^2+1)/t^3dt
=1/4・∫(t+2/t+1/t^3)dt
=1/4{1/2・t^2+2logt−1/2t^2}
=1/8{t^2−1/t^2}+1/2・logt
t=x+(1+x^2)^1/2
1/t=(1+x^2)^1/2−x
t^2−1/t^2=4x(1+x^2)^1/2
===================================