■シュタイナーの反転法(その5)
cosθ=(1−t^2)/(1+t^2),
sinθ=2t/(1+t^2)より,円のパラメータ表示は
(2t/(1+t^2),(1−t^2)/(1+t^2))
===================================
【1】球のパラメータ表示
(2u/(u^2+v^2+1),2v/(u^2+v^2+1)(u^2+v^2−1)/(u^2+v^2+1))
n次元球面では
(2y1/(y1^2+y2^2+・・・+yn^2+1),2y2/(y1^2+y2^2+・・・+yn^2+1),・・・,(y12+y2^2+・・・+ym-1^2−1)//(y1^2+y2^2+・・・+yn^2+1))
===================================