■チェバと円定理(その6)

 √3/2(ac-a/4-c/4-1/2)

-√3/2(3a/4-3c/4)

-Y(ac-a/4-c/4-1/2)

+Y(3a/4-3c/4)

 √3/2(ac-a/4-c/4-1/2)

+√3/2(3a/4-3c/4)

+Y(ac-a/4-c/4-1/2)

+Y(3a/4-3c/4)

の不変式部分

-√3/2(3a/4-3c/4)-Y(ac-a/4-c/4-1/2)=0

について,調べてみたい.

===================================

Y(ac-a/4-c/4-1/2)=-√3/2(3a/4-3c/4)

Y=-√3/2(3a/4-3c/4)/(ac-a/4-c/4-1/2)

Y=-3√3(a-c)/(8ac-2a-2c-4)

 これは(その3)に掲げた

  Y=3√3(c-a)/(8ac-2a-2c-4)

と等値である.

===================================