■素数の分解(その105)
pを奇素数とする。
p=x^2+my^2=(x+√(-m)y)(x-√(-m)y) (x,yは整数)
となる因数分解が存在するための条件について考える。
===================================
素数pがx^2+ny^2の形に表せるという問題は,虚2次体Q(√−n)のイデアル類群が深い関係にあることを示唆しています.
4n+1型素数は,x^2+y^2の形に表すことができる.
8n+1型素数は,x^2+2y^2の形に表すことができる.
8n+3型素数は,x^2+2y^2の形に表すことができる.
3n+1型素数は,x^2+3y^2の形に表すことができる.
7n+1型素数は,x^2+7y^2の形に表すことができる.
7n+2型素数は,x^2+7y^2の形に表すことができる.
7n+4型素数は,x^2+7y^2の形に表すことができる.
はそれぞれ虚2次体Q(√−1),Q(√−2),Q(√−3),Q(√−7)の類数が1であることが本質的なのです.
===================================