■ランダウの第2問題(その40)

 最初の双子素数(3,5)を除き,双子素数は(6n−1,6n+1)で,その間にある数はすべて6の倍数(6n)のように見える.

(5,7)→6(n=1)

(11,13)→12(n=2)

(17,19)→18(n=3)

(29,31)→30(n=5)

(41,43)→42(n=7)

(59,61)→60(n=10)

(71,73)→72(n=12)

nは素数とは限らない.

 双子素数(p,p+2)について,mod3,mod5で考えた結果,pは30n+11型素数または30n+17型素数または30n+29型素数でなければならないことがわかっている.すなわち,p+1は30n+12型または30n+18型または30n+30型で,6の倍数である.

===================================

【1】双子素数

 (p,p+2)がともに素数となるとき,双子素数と定義すると

p=1(mod3)のとき,p+2=0  (mod3)

p=2(mod3)のとき,p+2=1  (mod3)

→pは3n+2型素数でなければならない.

p=1(mod5)のとき,p+2=3  (mod5)

p=2(mod5)のとき,p+2=4  (mod5)

p=3(mod5)のとき,p+2=0  (mod5)

p=4(mod5)のとき,p+2=1  (mod5)

→pは5n+1型素数または5n+2型素数または5n+4型素数でなければならない.

[1](2n+1,3n+2,5n+1)の場合,連立合同式

  x=1  (mod2)

  x=2  (mod3)

  x=1  (mod5)

を計算しよう.

x=x1+2x2+6x3とおいて,最初の式に代入する.→x1+2x2+6x3=x1=1  (mod3)→x1=1がこの合同式の解である.

→x=1+2x2+6x3を2番目の式に代入する.→1+2x2+6x3=1+2x2=2  (mod3)→2x2=1  (mod3)→x2=2がこの合同式の解である.

→x=5+6x3を3番目の式に代入する.→5+6x3=1  (mod5)→6x3=−4  (mod5)→x3=1がこの合同式の解である.

 x=11となるので,中国剰余定理より連立合同式の解は

  x=11  (mod30)

である.

[2](2n+1,3n+2,5n+2)の場合,連立合同式

  x=1  (mod2)

  x=2  (mod3)

  x=2  (mod5)

を計算しよう.

x=x1+2x2+6x3とおいて,最初の式に代入する.→x1+2x2+6x3=x1=1  (mod3)→x1=1がこの合同式の解である.

→x=1+2x2+6x3を2番目の式に代入する.→1+2x2+6x3=1+2x2=2  (mod3)→2x2=1  (mod3)→x2=2がこの合同式の解である.

→x=5+6x3を3番目の式に代入する.→5+6x3=2  (mod5)→6x3=−3  (mod5)→x3=2がこの合同式の解である.

 x=17となるので,中国剰余定理より連立合同式の解は

  x=17  (mod30)

である.

[3](2n+1,3n+2,5n+4)の場合,連立合同式

  x=1  (mod2)

  x=2  (mod3)

  x=2  (mod5)

を計算しよう.

x=x1+2x2+6x3とおいて,最初の式に代入する.→x1+2x2+6x3=x1=1  (mod3)→x1=1がこの合同式の解である.

→x=1+2x2+6x3を2番目の式に代入する.→1+2x2+6x3=1+2x2=2  (mod3)→2x2=1  (mod3)→x2=2がこの合同式の解である.

→x=5+6x3を3番目の式に代入する.→5+6x3=4  (mod5)→6x3=−1  (mod5)→x3=4がこの合同式の解である.

 x=29となるので,中国剰余定理より連立合同式の解は

  x=29  (mod30)

である.

===================================